Identification of Disease on Leaves Soybean using Modified Otsu and Learning Vector Quantization Neural Networks
نویسندگان
چکیده
منابع مشابه
Isolated Sentences Recognition using Vector Quantization and Neural Networks
This paper shows a way to combine speech recognition techniques based on Vector Quantization (VQ) with Neural Networks (NN). Vector Quantization has proved its usefulness for isolated words recognition, but it is also useful for isolated sentences recognition. One way to improve the performance of this technique is to add an NN block that will help the performance of the VQ recognizer.
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Speaker Identification Using Vector Quantization
The use of vector quantization for speaker identification is investigated. This method differs from the known methods in that the number of centroids is not doubled but increases by 1 at every step. This enables us to obtain identification results at any number of centroids. This method is compared experimentally with the method (Lipeika and Lipeikiene, 1993a, 1993b), where feature vectors of i...
متن کاملVector Quantization Code Book Design Using Neural Networks
The Kohonen Self-Organizing Feature Map algorithm is compared to the K-Means vector quantization algorithm. Computation and storage requirements are calculated for both algorithms. A new algorithm which takes advantage of the structured code book produced by Kohonen's algorithm is introduced. This algorithm ooers a signiicant computational savings over full-search vector quantiza-tion without i...
متن کاملSupervised Neural Gas for Learning Vector Quantization
In this contribution we combine approaches the generalized leraning vector quantization (GLVQ) with the neighborhood orientented learning in the neural gas network (NG). In this way we obtain a supervised version of the NG what we call supervised NG (SNG). We show that the SNG is more robust than the GLVQ because the neighborhood learning avoids numerically instabilities as it may occur for com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kursor
سال: 2018
ISSN: 2301-6914,0216-0544
DOI: 10.28961/kursor.v9i3.158